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Fine-tune is all you need

• Transfer learning has been a widely used technique 
in a wide spread of applications.

• In deep learning era, you may hear from about the 
“fine-tune” technique for down-stream tasks.
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Fine-tune (transferable training) model/network is a key step



A Revisit of Machine Learning

• Machine learning is a modeling technique with 
statistics for parameters estimation of unknown fun.

• To be simple, given a dataset (X, y) with label y, a 
statistical learning model is to find a mapping f(.) 
between X and y, such that

y=f(x)

• A learning problem to be solved is how to find f(.)?

• Many learning techniques from shallow to deep.

• Gradient descent based techniques.
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A Revisit of Machine Learning

• To find a feasible (optimal) mapping (solution) f(.), 
machine learning is transformed to an optimization
technique.

• A general optimization (minimization) problem of 
learning is,

• R[.] is the expected risk defined by the loss function 
with input (X,y) sampled from a probabilistic 
distribution Pr and parameter θ of f(.)

• Pr should be an independent identical distribution (i.i.d.)
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A Revisit of Machine Learning

• However, due to the infinite space of the data 
distribution, we can only have a subset of the data 
(training data).

• So, the expected risk minimization is transformed 
into an empirical risk optimization problem,

• m is the size (number) of the finite training subset 
sampled from the distribution Pr.
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A Revisit of Machine Learning

• Generally, by only optimizing the empirical risk, we 
could not obtain a friendly solution. Overfitting on 
the training subset often happens.

• So, regularization technique is commonly used in 
the empirical risk optimization problem,

• Ω[θ] is the regularization on model parameters.

• Regularization plays a vital role in ML fields.
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A Revisit of Machine Learning

• Generalization is the final objective of ML task.

• The optimized parameter θ of the mapping 
function f (.) on a training subset sampled from Pr
should have generalization ability on a test subset 
sampled from an i.i.d. distribution Pr’.

• The expected risk of a test subset is estimated by

• θ is the solved parameters with training subset.
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A Revisit of Machine Learning

• Okay, now we can have a view of a general machine 
learning framework with problem definition, data 
collection, model selection and evaluation protocol.
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Problem Train

Data

Model Test
Alg. Para.

70% (50%train+20%cv)

30% (testing)



• So, anyone can easily deploy a machine learning 
task, finish your project and enjoy your life.

• Really?

• Machine learning modeling should also have some 
conditions.
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So angry but keep smiling

A Revisit of Machine Learning



• For learning a classifier/predictor based on (X, y), 
you should first have label y.

• Actually, data collection is sometimes expensive, 
but label is more expensive and needs cost-
ineffective manual power.

• An idea is to “borrow” the sufficiently labeled data 
from another domain.

• Chinese idioms :“他山之石，可以攻玉”--《诗经》
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Label problem is solved, so is it now okay? No!

Label is all you need



Probably Approximate Correct(PAC)

• PAC theory is an important basis of statistical ML.

• PAC refers to three basic problems,

• 1) Sample complexity: learning a hypothesis h 
needs a reasonable number of samples;

• 2) Computational complexity: learning a 
hypothesis h needs a reasonable computation 
complexity;

• 3) Learning reliability: the hypothesis h has a low 
error rate (empirical risk) on training set S, and a 
high success rate on a random test sample x. 
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Probably Approximate Correct(PAC)

• Error rate on training set (can be accurately calculated)

• Failure rate on a random test sample (to be estimated)

• Definition of PAC: 
A problem can be learnable if and only if the learner can 
output a hypothesis with arbitrary low error rate in 
arbitrary high probability, by using a reasonable number 
of data and reasonable computation complexity.
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Probably Approximate Correct(PAC)

• A figure to describe PAC

• A prior assumption is the i.i.d. condition.

• The training set and test sample should be sampled 
from an independent identical distribution (i.i.d.)
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A Preliminary of Transfer Learning

Problem definition:

Given a target task (DT) without labels (few labels), for 
learning a reliable predictor/classifier on domain DT, 

Not feasible?

• A sufficiently labeled, semantic related but 
distribution different source task (DS) is leveraged as 
auxiliary training data.

• Two key points:

1) Overcomes the label deficiency problem;

2) But introduces  non i.i.d. problem between DT and DS
16



A Preliminary of Transfer Learning

Differences from semi-supervised learning (i.i.d.)

• Marginal distribution

• Label space

1) Smooth assumption: data is distributed with different 
density and two samples in high density have same labels;

2) Cluster assumption: data has inherent cluster structure 
and two samples in the same cluster have same labels;

3) Manifold assumption: data has a low-dimensional 
manifold and two samples in local neighbor have same 
labels.
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A Preliminary of Transfer Learning

Differences from semi-supervised learning (i.i.d.)
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(a) Smoothness assumption   (b) Cluster assumption    (c) Manifold assumption



A Preliminary of Transfer Learning

Toy Examples: 

Semantic related but distribution different tasks
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Computer Vision
(image classification)

Natural Language Processing
(translation)

Text Recognition

Behavior learning skills (domain common knowledge )



A Preliminary of Transfer Learning

Mission and Objective:

Transfer learning is solving a class of uncommon 
machine learning problems, i.e. label deficiency and 
probability distribution discrepancy.

Revisit the expected risk of test data:

If Pr=Pr’ (i.i.d. for traditional ML), 

Else, the trained model is not transferable to test.
20



A Preliminary of Transfer Learning

Scenarios of non i.i.d.:
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Text Text

Image Text

Image Image

Data of Heterogeneity
(language, blur, etc.)

Data of Heterogeneity
(Media, modality)

Data of Heterogeneity
(background, viewpoint, pose

, modality, etc.)



A Preliminary of Transfer Learning

Weak Learning:

The concept of “weak learning” originates from the 
era of Boosting and AdaBoost (30 years ago).

Amazingly, the past “weak learning” is equivalent to 
“strong learning”. In a word,

“A problem can be weak-learned if and only if it can 
be strong-learned.”

Currently, the weak learning is really a weak problem 
rather than a strong problem.
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A Preliminary of Transfer Learning

Weak Learning:

1. Weakly-supervised learning (Zhihua Zhou, 2018)-
incomplete, inexact, inaccurate of labels

2. Transfer learning (Pratt L.Y., 1991; Qiang Yang, 2010)

3. Domain adaptation (Shai Ben-David, 2006)

p.s. Transfer learning and domain adaptation hold the 
same perspective for common knowledge learning 
between different domains.

In this tutorial, alternated usage of both names (TL vs. 
DA) frequently happens.
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A Preliminary of Transfer Learning

History of Transfer Learning (1990s-2020s):
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1991
(bud)

2006
(milestone)

2015
(milestone)

2020s
(mature)

Explosion periodBoom periodBudding period

Pratt L. 
(Neural network) Ben-David et al.

(Domain adaptation theory)

2010
(milestone)

Pan S.J. and Yang Q. (Survey on Transfer learning)
Saenko et al. (Visual domain adaptation)

Long et al. (Deep network adaptation)
Ganin et al. (Adversarial domain adaptation)
Tzeng et al. (Deep adversarial transfer)



A Preliminary of Transfer Learning

History of Transfer Learning (1991-1993, bud):

Originally, the “transfer” concept was proposed by L.Y. Pratt in 
1991 (AAAI) and 1993 (NIPS) between neural networks.

• L. Pratt, J. Mostow, and C. Kamm, Direct transfer of learned information 
among neural networks, AAAI, 1991.

• L. Pratt, “Discriminability-based transfer between neural networks,” 
in NIPS, 1993.
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A Preliminary of Transfer Learning

History of Transfer Learning (1991-1993, bud):
• L. Pratt, J. Mostow, and C. Kamm, Direct transfer of learned information 

among neural networks, AAAI, 1991.

• Motivation: “how to use information from one neural network to help 
a second network learn a related task”. 

• Focus: “learning on a target problem is sped up by using the weights 
obtained from a network trained for a related source task”

• L. Pratt, “Discriminability-based transfer between neural networks,” 
in NIPS, 1993.

26



A Preliminary of Transfer Learning

History of Transfer Learning (2006-2015, milestone):
• 15 Years later, in 2006, Shai Ben-David from University of Waterloo, 

published one paper in domain adaptation theory in NIPS 2006, and 
theoretically prove the expected error upper bound of target domain.

27

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of 
representations for domain adaptation. In: Advances in neural information 
processing systems



A Preliminary of Transfer Learning

History of Transfer Learning (2006-2015, milestone):
• in 2010, Qiang Yang from Hong Kong University of Science and 

Technology, published the first survey on transfer learning.

• in 2010, Kate Saenko from UC Berkeley published the first paper on 
domain adaptation, in ECCV, a top computer vision conference.

• from 2010-2015, a number of papers on transfer learning and domain 
adaptation were published.

• In this period, a number of classical TL/DA models and 
algorithms in classifiers and features are emerged.
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S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowledge 
and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.
K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to 
new domains,” in ECCV, 2010.



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):
Deep transfer learning and deep domain adaptation era. 

• in 2012, Bengio Y. published one paper on deep learning for transfer 
learning, in JMLR

• in 2014, Donahue et al. proposes “fine-tune” transfer strategy from a pre-
trained convolutional neural network and published in ICML 2014.

• Fine-tune has become a generic transfer learning strategy in many 
applications, such as medical image, remote sensing image, etc. 
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Y. Bengio, “Deep learning of representations for unsupervised and transfer learning,” 
JMLR, vol. 27, pp. 17–37, 2012.
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: A 
deep convolutional activation feature for generic visual recognition,” in ICML, 2014.



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):
Fine-tune based deep transfer learning application: 
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Large-scale Visual Recognition Challenge

ImageNet 

Science 2017, Stanford Univ. 

ImageNet
1.4 million

VGGNet (Oxford 
Univ.)

Satellite Images
(330,000 images)

Pre-train Fine-tune

Poverty prediction



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):
Deep convolutional network adaptation for transferable representation. 

• in 2015, Long et al. firstly published one paper on deep network 
adaptation based on MMD optimization.

• in 2015, Ganin et al. firstly proposed adversarial domain adaptation by 
using a gradient reversal layer for minimax optimization.

• in 2015, Tzeng et al. proposed deep adversarial transfer by solving a 
minimax gaming optimization as GAN.

31

M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable features with deep 
adaptation networks,” in ICML, 2015.
Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in 
arXiv, 2015.
E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across 
domains and tasks,” ICCV, vol. 30, no. 31, pp. 4068–4076, 2015.
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Concept

What is transfer learning (cross-modal face recog.)?

33

Task A
Knowledge

Task B

Model parameters (classifier, neural 
network, transformation etc. )

Related but different domain

𝑃(𝐴) ≠ 𝑃(𝐵)



Concept

What is transfer learning (handwritten digits recog.)?

34

Task A Task B

Space A Space B

Knowledge
Task A 

(MNIST)

𝑃(𝐴) ≠ 𝑃(𝐵)

Task B 

(USPS)



Concept

What is transfer learning (computer vision)?
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Object detection, segmentation and classification

(domain shift)
𝑃(𝑠𝑜𝑢𝑟𝑐𝑒) ≠ 𝑃(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑃(𝑠𝑜𝑢𝑟𝑐𝑒)

𝑃(𝑡𝑎𝑟𝑔𝑒𝑡)
Visual perception in foggy weather

(domain shift)



Concept

What is transfer learning?

Transfer learning or domain adaptation is leveraging a 
sufficiently labeled, distribution different but semantic related 
source domain for training and recognizing target domain 
samples.

36

Labeled source 
domain

Unlabeled/Few-
labeled target domain

Models and 
algorithms

Unlabeled target 
domain

Model 
parameters



Theory

Why are transfer learning models or algorithms 
effective and reliable?

In other words, how to guarantee the models or 
algorithms to have low generalization error on target 
data?

Ben-David Shai et al. induced a generalization bound 
of domain adaptation, which is widely used as a 
theoretical guidance for models and algorithms.

37

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of 
representations for domain adaptation. In: Advances in neural information 
processing systems



Theory

Shai Ben-David’s generalization bound theorem:

• To be simple, the expected target error 𝜖𝑇 ℎ is 
bounded as (proof based on triangular inequality is 
removed)

• ℋ is the set of hypothesis.

• The upper bound of 𝜖𝑇 ℎ consists of four terms.

38

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations 
for domain adaptation. In: Advances in neural information processing systems



Theory

Shai Ben-David’s generalization bound theorem:

• Ƹ𝜖𝑆(ℎ) is the source error, 𝑑ℋ ෩𝒟𝑆, ෩𝒟𝑇 is the 
ℋ −divergence and 𝜆 is the combined error of an 
ideal hypothesis ℎ∗.

1)

2)                                                         

3)

39

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations 
for domain adaptation. In: Advances in neural information processing systems



Theory

From 𝓗-divergence to 𝓗∆𝓗-divergence

• For a hypothesis space ℋ, the symmetric difference 
hypothesis space ℋ∆ℋ is defined.

• where ⊕ is the XOR function. In words, every hypothesis
g ∈ ℋ∆ℋ is the set of disagreements between two 
hypotheses ℎ, ℎ′ in ℋ,

40

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2010). A theory of learning from 
different domains. In: Machine Learning, 79, 151-175.



Theory

Shai Ben-David’s generalization bound theorem:

Essence of domain adaptation:

• A minimax problem

41

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2010). A theory of learning from 
different domains. In: Machine Learning, 79, 151-175.

min

maximization 

View 1:

View 2:



Theory

Question: 

Does Shai Ben-David’s domain adaptation theory 
really guarantee the success of transfer learning?

Not always! It is conditional.
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Theory

When does transfer learning not work?

• Theorem 1: Necessity of small 𝑑ℋ ෩𝒟𝑆, ෩𝒟𝑇 .

• Theorem 2: Necessity of small      (combined error).

If and only if both theorem 1 and theorem 2 meet at 
the same time, otherwise, transfer learning does not 
work.

In words, the domain discrepancy should be small.

43

Ben-David, S., Luu T., Lu T. and Pal D. (2010). Impossibility Theorems for Domain 
Adaptation. In: AISTATS.



Distribution Difference Measure

Distribution alignment is the key part of transfer 
learning. 

How to measure distribution difference between two 
distributions P and Q? Some typical statistics.

• MMD (Maximum Mean Discrepancy) (Gretton et al. NIPS’06, 
NIPS’09, JMLR’12)

• HSIC (Hilbert Schmidt Independence Criterion) (Gretton et al. 
ALT’05; Yan et al. TCYB’17, Wang et al. ICCV’17, CRTL)

• Bregman divergence (Si et al. TKDE’10, TSL)

• Moment statistics (Herath et al. CVPR’17, ILS; Sun et al. 
arXiv’17, CORAL; Peng et al. ICCV’19)
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Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

• Gretton et al. NIPS’06, NIPS’09, JMLR’12 from MPI, Germany 
proposed MMD. A non-parametric statistic for testing 
whether two distributions are different.

• By using smooth functions “Rich” and “Restrictive”.

1. MMD(p,q) vanishes if and only if p=q.

2. MMD empirical estimation can easily converge to its 
expectation. 

• In MMD, the unit balls in universal reproducing kernel 
Hilbert space are used as smooth functions. 

• Gaussian and Laplacian kernels are proved to be universal.
45



Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

46http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm

• Kernel is helping us to simplify the computation in infinite dimensional space
• To be simple, MMD is the upper bound of the domain mean discrepancy

Arbitrary Function Space:

RKHS:



Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

If f(x)=x, MMD is a first-order moment statistic;

If f(x)=x2, MMD is a second-order moment statistic;

• Moment match does not guarantee the distribution similarity.

• So, MMD can measure the discrepancy in arbitrary function space.

47http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm

Arbitrary Function Space:



Theory---->Algorithm

• Induced by the generalization bound theory, a 
number of models and algorithms are emerged, by 
focusing on three key points.

1) Source error 

2) Domain discrepancy

3) Combined error

48



Algorithm

How to design TL/DA models and algorithms?

• A taxonomy:

49

TL/DA models and 
algorithms

Semi-supervised Unsupervised

Labeled 
source data

Partial target 
labels 

Labeled 
source data

No target 
labels

Instance 
reweighting

Classifier 
adaptation

Feature 
adaptation

Deep 
transfer

Adversarial 
transfer

2007 2018



Algorithm
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Algorithm progress in the past 15 years



Algorithm
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Lei Zhang and Xinbo Gao,
Transfer Adaptation Learning: A 
Decade Survey, arXiv 2019.



Algorithm
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Principle of Instance Re-weighting (Jiang and Zhai, ACL 
2007; Huang et al. NIPS 2007):

• Revisit the expected risk of test set in Pr’:

• If Pr=Pr’, it degenerates to the traditional ML;
Otherwise, we let their ratio between them be

• Then, the regularized empirical risk becomes: 

• 𝛽𝑖 is the re-weighting coefficient w.r.t. sample i.



Algorithm
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Principle of Instance Re-weighting (Jiang and Zhai, ACL 

2007; Huang et al. NIPS 2007):

• Kernel mapping based re-weighting and reduces 
the domain discrepancy:

• Similarly, re-weighted maximum mean discrepancy



Algorithm
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Principle of Classifier Adaptation (Yang et al. ACM MM’07; 

Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’18): 

• Learn a common classifier on source domain, by leveraging a few 
labeled/ unlabeled target samples from target domain

• Assumption: There exists a delta function between the auxiliary 
classifier (source) fa and the new classifier (target) f.

Standard SVM
ASVM

Adaptive SVM



Algorithm
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Principle of Classifier Adaptation (Yang et al. ACM MM’07; 

Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’18): 

• With similar idea, from SVM to MKL (multi-kernel learning):

• Introduces the domain discrepancy

• Adaptive MKL (AMKL)



Algorithm
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Principle of Classifier Adaptation (Yang et al. ACM MM’07; 

Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’18): 

Representative work (zero padding feature augmentation, 
low-rank solution and delta function):
① Daumé III, et al. ACL’07(Frustrating Easy Adaptation, EA)
② Li, et al. TPAMI’14 (HFA)

Examples in Re-ID (WeiShi Zheng and Jianhuang Lai):
• View-specific transform for Re-ID (IJCAI’15, TPAMI’18)
• Deep zero padding

kernelize



Algorithm
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Principle of Classifier Adaptation (Yang et al. ACM MM’07; 

Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’18): 

Representative work (zero padding feature augmentation, 
low-rank solution and delta function):
③ Li, et al. TPAMI’18 (LRE-SVMs)
④ Zhang, et al. IEEE Sens.’17 (MFKS)

⑤ Joachmis, ICML’1999 (T-SVM)
⑥ Yang, et al. ACM MM’07 (ASVM)
⑦ Duan, et al. TPAMI’12 (AMKL)
⑧ Duan, et al. TPAMI’13 (DTSVM, DTMKL)

𝑅𝑟𝑒𝑔 𝑊, 𝑙 𝑋𝑆 , 𝑋𝑇 ,𝑊 =𝑅𝑒𝑚𝑝 𝑤𝑖 , 𝑙 𝑋𝑆 , 𝑋𝑇 , 𝑤𝑖

+ 𝑤1, 𝑤2, ⋯ , 𝑤𝐷 ∗



Algorithm
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Principle of Feature Adaptation:

• Subspace unification (Pan et al. TKDE’10; TNNLS’11; 
Hoffman et al. IJCV’14; Kan et al. IJCV’14)

• Manifold alignment (Gopalan et al. ICCV’11, SGF; Gong, et al. 
CVPR’12, GFK; Fernando, et al. ICCV’13, SA)

• Feature reconstruction/representation (Jhuo, et al. CVPR’12, 
RDALR; Shao, et al. IJCV’14, LTSL; Zhang et al. TIP’16, LSDT; 
Xu et al. TIP’16, DTSL)



Algorithm
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Subspace unification:

• General paradigm (domain-common/shared subspace 
learning)

𝑅𝑟𝑒𝑔 𝐖, 𝑙 𝑋𝑆, 𝑋𝑇,𝐖 = 𝑅𝑒𝑚𝑝 𝐖, 𝑙 𝑋𝑆, 𝑋𝑇 ,𝐖 +Ω 𝐖

Marginal distribution consistency

Conditional distribution consistency

𝑃 𝜙 𝑋𝑆 ≈ 𝑃 𝜙 𝑋𝑇

𝑃 𝜙 𝑋𝑆
𝑖 |𝑦𝑆

𝑖 ≈ 𝑃 𝜙 𝑋𝑇
𝑖 |𝑦𝑇

𝑖 , 𝑖 = 1,⋯ , 𝐶

Source Target

Source Target
• W is a transformation matrix.



Algorithm
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Manifold alignment:

• General paradigm (learn mapping)

SGF
find some intermediate representation 

along the geodesic path

GFK
construct kernels along the geodesic path to

model the domain shift by using infinite subspaces
G is a positive semi-definite mapping matrix

M

SA
learn the linear mapping M that makes the subspace closer



Algorithm

Feature reconstruction:

• General paradigm (low-rank/sparse coding)

min
𝑊,𝑍,𝐸

𝐹 𝑊 +ℜ 𝑍 + Ω 𝐸

s.t. 𝑓 𝑋𝑇 = 𝑓 𝑋𝑆 𝑍 + 𝐸

F(.) is subspace learning fun.
f(.) is transformation fun.

LRR: strength (better locality of data, block-wise structure, neighbor to neighbor reconstruction )
weakness (strong assumption of independent subspaces and sufficient data, easy to get trivial solution)



Algorithm

Feature reconstruction:

• General paradigm (low-rank/sparse coding)

• 1) domain-shared dictionary

• 2) domain-specific dictionary

• α denotes domain-specific coding coefficient w.r.t. the basis of 
dictionary D.

For a better basis:
Domain adaptive dictionary (Rama Chellappa. CVPR’13, SDDL)



Algorithm
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Principle of Deep Network Adaptation:

• Fine-tune is a kind of intuitive and data-driven transfer 
learning method, which depends on pretrained models with 
task-specific source database (e.g., ImageNet)

Model-driven

Fine-tune
Domain discrepancy 

minimization
Domain 

confusion

Data-driven Model-driven

ImageNet

Deep transfer

ℒ = ℒ𝐶𝑙𝑠 𝑋𝑆, 𝑌 + ℜ𝑀𝑀𝐷 𝑆, 𝑇 ℒ = ℒ𝐶𝑙𝑠 𝑋𝑆, 𝑌 + ℒ𝑐𝑜𝑛𝑓 𝑆, 𝑇

Pre-train



Algorithm
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Deep network with discrepancy alignment:

• Learn general feature representation with domain 
discrepancy minimization in supervised manner 
(Tzeng, arXiv’14; Long et al. ICML’15, NIPS’16; Yan, et al. 

CVPR’17; Rozantsev et al. CVPR’18)



Algorithm
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Domain confusion:

• Learn general feature representation with domain 
confusion/domain alignment (Ajakan et al. NIPS’14, 

DANN; Tzeng et al. ICCV’15, DDC; Murez et al. CVPR’18)

Softmax cross-entropy loss

Goal: learning domain-invariant representation

Source

Target



Algorithm
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Principle of Deep Adversarial Adaptation:

• Learn feature generation model with domain 
confusion (Ganin et al. JMLR’16; Tzeng et al. CVPR’17, ADDA;  

Chen et al. CVPR’18, RAAN; Saito et al. CVPR’18, MCD; Pinheiro, 
CVPR’18 )

• This kind of models are approaching the minimax essence of 
domain adaptation.

min

maximization 

View 1:

View 2:
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Principle of Deep Adversarial Adaptation:

Gradient reversal layer for adversarial domain adaptation

min
ℎ∈ℋ

𝑒𝑟𝑟 ℎ 𝑥 max
𝑓

𝑒𝑟𝑟 ℎ 𝑥

S T

Aligned (confusion)

h(x)
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Principle of Deep Adversarial Adaptation:

ADDA

Adversarial Discriminative 

Domain Adaptation

RAAN

Re-weighted Adversarial 

Adaptation Network

MCD

Maximize Classifier 

Discrepancy
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NEW DIRECTIONS/TOPICS in TL/DA:

Category shift problem (catastrophic misalignment)

UniDA (sample-level weighting idea based on entropy and 
uncertainty) to simultaneously solve partial and open-set DA.

Inaccuracy of Target pseudo-labels

Clustering based idea and Progressive training.

Multi-source DA

Aggregate multiple sources to one source domain, +DA.

Source-free DA

Source data is unseen (data privacy), and you can only access 
the source pre-trained model. Essence: Parameter transfer.

Domain generalization

……
This will be introduced in another slides, pls wait in patience
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Transfer Learning + X
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• Application fields (machine learning related AI topics)

1) Computer vision

2) Natural language processing

3) Big data analysis

4) Smart instruments 

5) Medical image analysis

6) Remote sensing

7) …

Computer 
Vision

Image 
classification

Object 
detection

Image 
Retrieval
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• Image classification is the benchmark task for testing each 
new TL/DA model and algorithm.

• Cross-domain multi-class classification is standard protocol.

Domain 1 (Sketch)

Domain 2 (Painting)

Domain 3 (Cartoon)

Domain 4 (Photo)

dog elephant giraffe gitar horse house person
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Benchmark Datasets

• Office-31 (3DA, 3 domains, 31 classes, 4652 images)

• Office+Caltech-10 (4DA, 4 domains, 10 classes, 2533 images)

• MNIST+USPS (3 domains, 10 classes, 67291 images)

• Multi-PIE (5 domains, 68 ids, 41368 faces)

• COIL-20 (2 domains, 20 classes, 1440 images)

• MSRC+VOC2007 (2 domains, 6 classes, 9000+images)

• IVLSC (4 domains, 5 classes, 15000+images)

• Office-Home (4 domains, 65 classes, 15500 images)

• ImageCLEF (3 domains, 12 classes, 1800 images)

• P-A-C-S (4 domains, 7 classes, ~10000 images)

• VisDA (2 domains, 12 classes, 280000 images)
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SoTA Performance

Cross-domain classification accuracy on Office-Home (Resnet-50 backbone)

S. Wang and L. Zhang, “Self-adaptive Re-weighted Adversarial Domain Adaptation,” IJCAI, 2020.
Long, et al. “Conditional Adversarial Domain Adaptation,” NeurIPS, 2018.
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SoTA Performance

Cross-domain classification accuracy on Office-31, ImageCLEF (Resnet-50 backbone)

Classification accuracy on MNIST-USPS
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Domain adaptive/transferable feature visualization
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Definition of a detection task

• Image classification focuses on high-level abstract feature 
semantics

• Object detection is a multi-task issue (classification vs. 
localization) , the low-level features are also useful
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A number of models in object detection

Earlier

HOG 
detector 
(2005)

DPM 
detector 
(2008~)

Deep 
learning

RCNN
(2014~)

SPP-Net
(2014)

R-FCN
(2016)

YOLOs
(2016~)

SSD
(2016)

RetinaNet
(2017)

Two-stage

One-stage

⋯

⋯

Anchor-free
FCOS (2018)
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Imbalance Problems of object detection

• Problem 1: Scale imbalance (object of different size, scale)  
SSD, FPN

• Problem 2: Class imbalance (foreground vs. background, easy 
vs. hard) Focal loss, OHEM

• Problem 3: IoU imbalance (IoU levels,  low vs. high quality, 
outliers) Libra RCNN (balanced L1), GHM, IoU based losses

• Problem 4: Loss imbalance (cls. vs. reg.) PISA, classification 
aware localization loss, paid less attention
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Solving scale imbalance problem: Feature Pyramid Network

• Lower levels have better spatial resolution

• Higher levels have stronger semantics information

2x up

2x up
2x up

1x1

1x1
1x1

Cls+reg

• In FPN, high-level semantic information is back-propagated to the 

low-level, but information loss is serious.
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Single-shot Two-pronged Detector (TPNet):

• A new architecture of two-pronged bi-directional interaction 
and transfer between low-levels and high-levels

• A Rectified Intersection of Union (RIoU) loss

Spatial information (conv)

Semantic information (deconv)

Keyang Wang and Lei Zhang, Single-Shot Two-Pronged Net with Rectified IoU
Loss, ACM MM 2020. Oral paper)
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Single-shot Two-pronged Detector (TPNet):

• A new architecture of two-pronged bi-directional interaction 
and transfer between low-levels and high-levels

• A Rectified Intersection of Union (RIoU) loss

Keyang Wang and Lei Zhang, Single-Shot Two-Pronged Net with Rectified IoU
Loss, ACM MM 2020. Oral paper)
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• TPNet architecture
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• Transductive block and Fusion block

(c) Fusion block
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• Gradient guided RIoU loss

Revisit the standard IoU loss

We can define the gradient (red curve) as:

integral

Note 5 model parameters analytically determined with 
5 equations.
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• Gradient guided RIoU loss

integral
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• Experiments on PASCAL VOC
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• Experiments on MS COCO
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• Visualization
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Motivation

• Labels of a specific target domain are not free to use.

• Leveraging a related source domain is natural.

• Existing detectors (one stage vs. two-stage) are not 
transferable.

Normal weather (source) Foggy weather (target)

Image degradation (noise, e.g. haze) has a clear impact on learning



Flaws of Object Detectors

92

Perspective of distribution mismatch

High-quality detection 
(Faster RCNN)

Low-quality detection
(Faster RCNN)

Z. He and L. Zhang, Multi-adversarial Faster RCNN for Unrestricted Object Detection, 
ICCV, 2019.

High-quality detection
(Transfer Learning)
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Perspective of adversarial sample

• Attack YOLO-v2 to fool surveillance cameras (AI is not safe).

Simen Thys, W.V. Ranst, Fooling automatic surveillance cameras: adversarial patches to 
attack person detection, arXiv, 2019.
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DAF model based on 𝓗-divergence

1) Image-level alignment; 2)Instance-level alignment

Chen et al., Domain adaptive faster-rcnn for object detection in the wild, CVPR, 2018.
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MAF model in ICCV’19

• Multiple GRLs for adversarial domain adaptation 

Z. He and L. Zhang, Multi-adversarial Faster RCNN for Unrestricted Object Detection, ICCV, 2019.
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ATF model in ECCV’20

Z. He and L. Zhang, Domain Adaptive Object Detection via Asymmetric Tri-way Faster-RCNN, ECCV, 2020.

Out of control

Unlabeled target data
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Experiments on cross-domain detection

18% improvement with transfer learning
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Experiments on cross-domain detection

12% and 20% improvement with transfer learning
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Experiments on cross-domain detection

14% improvement with transfer learning
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Something You May Concern:

Q: Does degradation removal HELP Object Detection and Image Classification 
(e.g., dehazing)?

View 1: New research finds that dehaze DOES NOT help object detection and 
image classification. The reason is that dehaze does not add NEW information 
beneficial to high-level tasks.

B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, Z. Wang, “Benchmarking Single Image Dehazing and Beyond,” 
IEEE Trans. Image Processing, 2019.
Y. Pei, Y. Huang, Q. Zou, X. Zhang, S. Wang, “Effects of Image Degradation and Degradation Removal to CNN-
based Image Classification,” IEEE Trans. Patten Analysis and Machine Intelligence, 2019.

Groundtruth 5 dehazing models
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Something You May Concern:

View 2: Adversarial samples.

Panda Gibbon
(99.3% confidence) 

noise

Q: Does degradation removal HELP Object Detection and Image Classification 
(e.g., dehazing)?

Ekin Dogus Cubuk, Barret Zoph, Samuel Stern Schoenholz, Quoc V. Le, Intriguing 
Properties of Adversarial Examples
Szegedy et al, Deep Neural Networks are Easily Fooled: High Confidence Predictions 
for Unrecognizable Images

https://openreview.net/profile?email=cubuk@google.com
https://openreview.net/profile?email=barretzoph@google.com
https://openreview.net/profile?email=schsam@google.com
https://openreview.net/profile?email=qvl@google.com
https://link.zhihu.com/?target=https://arxiv.org/pdf/1312.6199.pdf
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Lower-level prediction (pixel-level):

• Semantic segmentation needs pixel-level labeling

• Transfer from synthetic domain to real domain.

Du et al. SSF-DAN: Separated Semantic Feature based Domain Adaptation 
Network for Semantic Segmentation, ICCV 2019.

From Computer game From Cityscapes
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Domain-adaptive semantic segmentation framework:

• H-divergence based adversarial domain adaptation theory
• GRL minimax optimization
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Performance:

12%
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A classical similarity match task:

• Cross-modal retrieval (text--image)

• Hashing retrieval (image--image)

• Person Re-identification (person--person)

• Person Search (image--person)

Pink backpack

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.
J. Liu, L. Zhang, Optimal Projection Guided Transfer Hashing for Image Retrieval, AAAI 2019.
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Consider a cross-domain retrieval problem:

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.

Incorrect match

Domain 
mismatch
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Probability Weighted Compact Feature Learning:

• Hashing for compact feature (binary feature of low memory)

• Focal triplet hashing in Bayesian perspective (BP)

• The posterior probability of compact feature fi,fj,fk w.r.t. to 
xi,xj,xk, given their similarity sij and sik

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.
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Probability Weighted Compact Feature Learning:

• Hashing for compact feature (binary feature of low memory)

• Focal triplet hashing in Bayesian perspective (BP)

• The posterior probability of compact feature fi,fj,fk w.r.t. to 
xi,xj,xk, given their similarity sij and sik

• p(.) is sampled from a Gaussian distribution
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Probability Weighted Compact Feature Learning:
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Experiments on cross-domain retrieval:

Significant improvement with domain adaptation
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In this talk, a systematic introduction of transfer learning and 
domain adaptation in background, theory, algorithms and 
applications.

• Statistical machine learning is conditional on i.i.d. distribution

• Ben-David proves an upper bound of domain adaptation

• Deep learning triggers the progress of transfer learning

• Transfer learning is showing a bloom suitation

• A wide spread of applications in many fields
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In AI era, researchers are exploring universal techniques.

• Vision perception in open environment

• Natural language processing in translation and interaction.

• Brain like learning

• From perception to cognition

• Causality and reasoning

• Attack and defense

• AI ethics connecting society (privacy, safety, etc.)

• …



Thank you

114


