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Fine-tune is all you need

* Transfer learning has been a widely used technique
in a wide spread of applications.

* In deep learning era, you may hear from about the
“fine-tune” technique for down-stream tasks.

CV tasks Intelligent Rem(.)te Indl.Jstr!aI
cameras sensing application
Huge data Fine-tune={transferabletraining) model/network is a key step
(ImageNet)

Smart Autonomous Medical

: . : Smart cit
Robotics vehicles image Y



A Revisit of Machine Learning

* Machine learning is a modeling technique with
statistics for parameters estimation of unknown fun.

* To be simple, given a dataset (X, y) with label y, a
statistical learning model is to find a mapping f(.)
between X and vy, such that

y=f(x)
* A learning problem to be solved is how to find f(.)?
* Many learning techniques from shallow to deep.
* Gradient descent based techniques.



A Revisit of Machine Learning

* To find a feasible (optimal) mapping (solution) f(.),
machine learning is transformed to an optimization
technique.

* A general optimization (minimization) problem of
learning is,

R[Pr, 0, 1(2,y,6)] = B yyops [[(x,,0))

* R[.] is the expected risk defined by the loss function
with input (X,y) sampled from a probabilistic
distribution Pr and parameter 6 of f(.)

* Pr should be an independent identical distribution (i.i.d.)



A Revisit of Machine Learning

* However, due to the infinite space of the data
distribution, we can only have a subset of the data
(training data).

* So, the expected risk minimization is transformed
into an empirical risk optimization problem,

R[PI‘, Qa l(iﬁ, Y, 9)] — E(:r..-y)mpr [l(l‘ Y, 9)]
g RemplZ,0,(z,y,0)] — Z[ (x4, yi,0

* mis the size (number) of the flnlte training subset
sampled from the distribution Pr.



A Revisit of Machine Learning

* Generally, by only optimizing the empirical risk, we
could not obtain a friendly solution. Overfitting on
the training subset often happens.

* So, reqularization technique is commonly used in
the empirical risk optimization problem,

- ——— ===

« Q[H] Is the regularization on model parameters.
 Regularization plays a vital role in ML fields.



A Revisit of Machine Learning

e Generalization is the final objective of ML task.

* The optimized parameter 6 of the mapping
function f (.) on a training subset sampled from Pr
should have generalization ability on a test subset
sampled from an i.i.d. distribution Pr’.

* The expected risk of a test subset is estimated by

R[Pr !v 9* Z(I* U* 9)] — E(Iﬁy)wpl" [[(r* U* 9)]

* 0 Is the solved parameters with training subset.



A Revisit of Machine Learning

* Okay, now we can have a view of a general machine
learning framework with problem definition, data
collection, model selection and evaluation protocol.

Alg. Para.
w—ﬂ Model ?—g Train 2 Test

|

|
70% (50%train+20%cv)
Data
30% (testing)

10



A Revisit of Machine Learning

* SO, anyone can easily deploy a machine learning
task, finish your project and enjoy your life.

* Really?

* Machine learning modeling should also have some

conditions. @

YF S
BXEBRRIFME

So angry but keep smiling



Label is all you need

* For learning a classifier/predictor based on (X, vy),
you should first have label y.

* Actually, data collection is sometimes expensive,
but label is more expensive and needs cost-
ineffective manual power.

* Anidea is to “borrow” the sufficiently labeled data
from another domain.

 Chinese idioms :“filll =z A, T IUINE"-- (IFR)

Label problem is solved, so is it now okay? No!



Probably Approximate Correct(PAC)

* PAC theory is an important basis of statistical ML.
* PAC refers to three basic problems,

e 1) Sample complexity: learning a hypothesis h
needs a reasonable number of samples;

 2) Computational complexity: learning a
hypothesis h needs a reasonable computation
complexity;

* 3) Learning reliability: the hypothesis h has a low
error rate (empirical risk) on training set S, and a
high success rate on a random test sample x.



Probably Approximate Correct(PAC)

* Error rate on training set (can be accurately calculated)

Errorg(h) = % d(h(x) # GT)

XES

* Failure rate on a random test sample (to be estimated)
Errorp(h) = Prycp(h(x) # GT)

e Definition of PAC:

A problem can be learnable if and only if the learner can
output a hypothesis with arbitrary low error rate in
arbitrary high probability, by using a reasonable number
of data and reasonable computation complexity.

14



Probably Approximate Correct(PAC)

* A figure to describe PAC

Random
ling
Sample samp i i
spacg D fraining se Hypothesis A with low error rate
(i.i.d.) £
5,
0, . —
% Test sample x High success rate of prediction

e A prior assumption is the i.i.d. condition.

* The training set and test sample should be sampled
from an independent identical distribution (i.i.d.)

15



A Preliminary of Transfer Learning

Problem definition:

Given a target task (D;) without labels (few labels), for
learning a reliable predictor/classifier on domain Dy,

Not feasible?

* A sufficiently labeled, semantic related but
distribution different source task (D) is leveraged as
auxiliary training data.

* Two key points:
1) Overcomes the label deficiency problem;
2) But introduces non i.i.d. problem between D; and Dq



A Preliminary of Transfer Learning

Differences from semi-supervised learning (i.i.d.)
* Marginal distribution P(X;) = P(X,)

* Label space p(v)|X,) = P(Y,|X.)

1) Smooth assumption: data is distributed with different
density and two samples in high density have same labels;

2) Cluster assumption: data has inherent cluster structure
and two samples in the same cluster have same labels;

3) Manifold assumption: data has a low-dimensional
manifold and two samples in local neighbor have same
labels.



A Preliminary of Transfer Learning

Differences from semi-supervised learning (i.i.d.)
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(c)

(a) Smoothness assumption (b) Cluster assumption

(c) Manifold assumption
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A Preliminary of Transfer Learning

Toy Examples:
Semantic related but distribution different tasks

Behavior learning skills (domain common knowledge )
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Computer Vision Natural Language Processing Text Recognition
(image classification) (translation) 19




A Preliminary of Transfer Learning

Mission and Objective:

Transfer learning is solving a class of uncommon
machine learning problemes, i.e. label deficiency and
probability distribution discrepancy.

Revisit the expected risk of test data:
R[Pr'.0,l(x,y,0)] = E y~pv [l(7,y,0)]

Pr'(z 2
— E(:r,y)wpr ﬁ[(r Y, Q)J
If Pr=Pr’ (i.i.d. for traditional ML),
E(:r.,-y)mPr [[(I’ Y, 9)] — E(:r,y)wPr" [[(I’ Y, 9)]

Else, the trained model is not transferable to test.

20



A Preliminary of Transfer Learning

Scenarios of non i.i.d.:

Data of Heterogeneity Text 7 Text 7
(language, blur, etc.)
Data of Heterogeneity . 7
Text
(Media, modality) tlmﬁm D
Data of Heterogeneity = -
(background, viewpoint, pose Image | Image
, modality, etc.)

21



A Preliminary of Transfer Learning

Weak Learning:

The concept of “weak learning” originates from the
era of Boosting and AdaBoost (30 years ago).

Amazingly, the past “weak learning” is equivalent to
“strong learning”. In a word,

“A problem can be weak-learned if and only if it can
be strong-learned.”

Currently, the weak learning is really a weak problem
rather than a strong problem.

22



A Preliminary of Transfer Learning

Weak Learning:

1. Weakly-supervised learning (Zhihua Zhou, 2018)-
Incomplete, inexact, inaccurate of labels

2. Transfer learning (Pratt L.Y., 1991; Qiang Yang, 2010)
3. Domain adaptation (Shai Ben-David, 2006)

n.S. Transfer learning and domain adaptation hold the
same perspective for common knowledge learning
petween different domains.

n this tutorial, alternated usage of both names (TL vs.
DA) frequently happens.




A Preliminary of Transfer Learning

History of Transfer Learning (1990s-2020s):

Pan S.J. and Yang Q. (Survey on Transfer learning)
Pratt L. Saenko et al. (Visual domain adaptation)

(Neural network) Ben-David et al.

(Domain adaptation theory)

) @ () @ (O
Budding period Boom period Explosion period

1991 2006 2010 2015 2020s

(bud) (milestone) (milestone) (milestone) (mature)

Long et al. (Deep network adaptation)
Ganin et al. (Adversarial domain adaptation)
Tzeng et al. (Deep adversarial transfer)



A Preliminary of Transfer Learning

History of Transfer Learning (1991-1993, bud):

Originally, the “transfer” concept was proposed by LY. Pratt in
1991 (AAAI) and 1993 (NIPS) between neural networks.

Direct Transfer of Learned Information Among Neural Networks Discriminability-Based Transfer between

Neural Networks

Lorien Y. Pratt and Jack Mostow and Candace A. Kamm
Computer Science Department Speech Technology Research
Rutgers University Bellcore, 445 South Street e
New Brunswick, NJ 08903 Morristown, NJ 07962-1910 i

Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO 80401
Ipratt@mines.colorado.edu

e L. Pratt, J. Mostow, and C. Kamm, Direct transfer of learned information
among neural networks, AAA/, 1991.

e L. Pratt, “Discriminability-based transfer between neural networks,”
in NIPS, 1993.



A Preliminary of Transfer Learning

History of Transfer Learning (1991-1993, bud):

e L. Pratt, J. Mostow, and C. Kamm, Direct transfer of learned information
among neural networks, AAA/, 1991.

* Motivation: “how to use information from one neural network to help
a second network learn a related task”.

* Focus: “learning on a target problem is sped up by using the weights
obtained from a network trained for a related source task”

e L. Pratt, “Discriminability-based transfer between neural networks,”
in NIPS, 1993.

Source training data Target training data
N Y LT —— 0.0 ..
® 0o :1;0 4\ Hyperplanes o 10
- 1/ 0 should be 1 0
s 0 . 0
« P y~ retained
' JE - 1o 1.0
----- -q...--:la.- --..----.-------------.-...-.-..---.-.---...---...----..--o,-----.- cemssccssnann
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A Preliminary of Transfer Learning

History of Transfer Learning (2006-2015, milestone):

* 15 Years later, in 2006, Shai Ben-David from University of Waterloo,
published one paper in domain adaptation theory in NIPS 2006, and
theoretically prove the expected error upper bound of target domain.

Analysis of Representations for Domain Adaptation

Shai Ben-David John Blitzer, Koby Crammer, and Fernando Pereira
School of Computer Science Department of Computer and Information Science
University of Waterloo University of Pennsylvania
shai@cs.uwaterloo.ca {blitzer, crammer, pereira} @cis.upenn.edu

4 2em 4 -
er(h) <és(h) + \/m (d log E(;n + log 6) +dy(Ds,Dr) + A
Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of
representations for domain adaptation. In: Advances in neural information
processing systems



A Preliminary of Transfer Learning

History of Transfer Learning (2006-2015, milestone):

* in 2010, Qiang Yang from Hong Kong University of Science and
Technology, published the first survey on transfer learning.

* in 2010, Kate Saenko from UC Berkeley published the first paper on
domain adaptation, in ECCV, a top computer vision conference.

* from 2010-2015, a number of papers on transfer learning and domain
adaptation were published.

* In this period, a number of classical TL/DA models and
algorithms in classifiers and features are emerged.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowledge
and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to
new domains,” in ECCV, 2010.



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):

Deep transfer learning and deep domain adaptation era.

* in 2012, Bengio Y. published one paper on deep learning for transfer
learning, in JMLR

* in 2014, Donahue et al. proposes “fine-tune” transfer strategy from a pre-
trained convolutional neural network and published in ICML 2014.

* Fine-tune has become a generic transfer learning strategy in many
applications, such as medical image, remote sensing image, etc.

)

Y. Bengio, “Deep learning of representations for unsupervised and transfer learning,
JMLR, vol. 27, pp. 17-37, 2012.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: A
deep convolutional activation feature for generic visual recognition,” in ICML, 2014.



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):

Fine-tune based deep transfer learning application:

RESEARCH ARTICLES

ECONOMICS

Combining satellite imagery and
machine learning to predict poverty

Neal Jean,"** Marshall Burke,>***{ Michael Xie,' W. Matthew Davis,*
David B. Lobell,>* Stefano Ermon*

Science 2017, Stanford Univ.

ImageNet  Pre-train , VGGNet (Oxford (Fine-tune Satellite Images
1.4 million Univ.) (330,000 images)

Poverty prediction 30



A Preliminary of Transfer Learning

History of Transfer Learning (2015-now, explosion):

Deep convolutional network adaptation for transferable representation.

* in 2015, Long et al. firstly published one paper on deep network
adaptation based on MMD optimization.

* in 2015, Ganin et al. firstly proposed adversarial domain adaptation by
using a gradient reversal layer for minimax optimization.

* in 2015, Tzeng et al. proposed deep adversarial transfer by solving a
minimax gaming optimization as GAN.

M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable features with deep
adaptation networks,” in ICML, 2015.

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in
arXiv, 2015.

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across
domains and tasks,” ICCV, vol. 30, no. 31, pp. 4068-4076, 2015. -
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Concept

What is transfer learning (cross-modal face recog.)?

Model parameters (classifier, neural
network, transformation etc. )

Related but different domain

33



Concept

What is transfer learning (handwritten digits recog.)?
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Task B

(4) # P(B)
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P

Task A
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Space A
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Knowledge

(USPS)

(MNIST)
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Concept

What is transfer learning (computer vision)?

iy g

Object detection, segmentatlon and classification P(Source)

(domain shift)

P(source) # P(target)

i1 s
L LT el

P(target)

Visual perception in foggy weather

(domain shift)
35



Concept

What is transfer learning?

Transfer learning or domain adaptation is leveraging a
sufficiently labeled, distribution different but semantic related
source domain for training and recognizing target domain
samples.

Labeled source Mode.ls and Model
domain algorithms parameters

Unlabeled/Few-
labeled target domain domain

36



Theory

Why are transfer learning models or algorithms
effective and reliable?

In other words, how to guarantee the models or
algorithms to have low generalization error on target
data?

Ben-David Shai et al. induced a generalization bound
of domain adaptation, which is widely used as a
theoretical guidance for models and algorithmes.

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of
representations for domain adaptation. In: Advances in neural information
processing systems



Theory

Shai Ben-David’s generalization bound theorem:

* To be simple, the expected target error €1-(h) is
bounded as (proof based on triangular inequality is
removed)

4 2 4 -
er(h) < és(h) + J— (dloo ‘L;” + log 5) + dy(Ds.Dr) + A
T G

 H is the set of hypothesis.
* The upper bound of e(h) consists of four terms.

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations
for domain adaptation. In: Advances in neural information processing systems



Theory

Shai Ben-David’s generalization bound theorem:

» &5(h) is the source error, ds;(Ds, Dy ) is the
H —divergence and A is the combined error of an
ideal hypothesis h™.

1) es(h) = Ezwag {EIUP'\.»]E(Z) Y F h(Z)ﬂ
f( ) — h(z)| .

Zng

2) dy (S, 7T) =2 (1 — }:}él’ﬁ ((‘?'f"!‘g(li.(X)) + <'=r‘f"r(le(x)))) =2 (1 — 2}}2}}1} err (/z(;r)))
3) A = minpey €s(h) + er(h)

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations
for domain adaptation. In: Advances in neural information processing systems



Theory

From H-divergence to H AH -divergence

* For a hypothesis space H, the symmetric difference
hypothesis space H AH is defined.

g e HAH <+— gxX)=h(x)®h'(x) forsomeh h'eH

* where @ is the XOR function. In words, every hypothesis
g € HAH is the set of disagreements between two

hypotheses h, h' in I,
drar(Ds,Dr) =2 sup |Prowpg [h(x)# W (x)] — Prowp, [h(x) # h'(x)]|
h.heH
=2 sup |Prp _[z:7(2) =1] = Prp _|z:n(z) =1
neHAH i

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2010). A theory of learning from
different domains. In: Machine Learning, 79, 151-175.



Theory

Shai Ben-David’s generalization bound theorem:

1 A
er(h) <es(h) + Ed’HA’H(Z/{SaMT) + A

Essence of domain adaptation:
* A minimax problem maximization

,_____________________________________________________.

View1: min dyan(Ds, Dy) =2 sup |P?'*D [z:m(z) = 1] — P-rj_—:,T [z :n(z) = 1]|
L neHAH |

View 2: i : in — 2minerr (h(x & maxminerr (h(x
111}}11(!,4(8 T)<:>111j91112(1 2}3;1%%(” (fs(z))) ax h(x))

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2010). A theory of learning from
different domains. In: Machine Learning, 79, 151-175.



Theory

Question:

Does Shai Ben-David’s domain adaptation theory
really guarantee the success of transfer learning?

Not always! It is conditional.



Theory

When does transfer learning not work?

» Theorem 1: Necessity of small d4:(Ds, Dr).

* Theorem 2: Necessity of small X (combined error).

If and only if both theorem 1 and theorem 2 meet at
the same time, otherwise, transfer learning does not
work.

In words, the domain discrepancy should be small.

Ben-David, S., Luu T., Lu T. and Pal D. (2010). Impossibility Theorems for Domain
Adaptation. In: AISTATS.



Distribution Difference Measure

Distribution alighment is the key part of transfer
learning.

How to measure distribution difference between two
distributions P and Q? Some typical statistics.

* MMD (Maximum Mean Discrepancy) (Gretton et al. NIPS’06,
NIPS’09, JMLR’12)

e HSIC (Hilbert Schmidt Independence Criterion) (Gretton et al.
ALT’05; Yan et al. TCYB’17, Wang et al. ICCV’17, CRTL)

* Bregman divergence (Si et al. TKDE’10, TSL)

* Moment statistics (Herath et al. CVPR’17, ILS; Sun et al.
arXiv’'17, CORAL; Peng et al. ICCV’19)



Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

* Gretton et al. NIPS’06, NIPS’09, IMLR’12 from MPI, Germany
proposed MMD. A non-parametric statistic for testing
whether two distributions are different.

* By using smooth functions “Rich” and “Restrictive”.
1. MMD(p,q) vanishes if and only if p=q.

2. MMD empirical estimation can easily converge to its
expectation.

* In MMD, the unit balls in universal reproducing kernel
Hilbert space are used as smooth functions.

e Gaussian and Laplacian kernels are proved to be universal.

45



Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

Definition 2 Let F be a class of functions f : X — R and let p,q, X.Y be defined as above. Then
we define the maximum mean discrepancy (MMD) and its empirical estimate as

MMD [F,p, q] := sup (Epplf(z)] —Eyoq[f(¥)]). (1)
Arbitrary Function Space: red
m 1 mn
MMD [, X. Y] i= sup ( Zf - = 2 f(y,-)) . 2)

Theorem 3 Let F he a unit ball in a universal RKHS I, defined on the compact metric space X,
with associated kernel k(-, ). Then MMD [F, p,q] = 0 if and only if p = q.

Using p[X] := L 3"  é(z;) and k(z, 2") = (o(x), o(2')), an[empirical estimate]ofMMD 1s

1

m 9 m,n 1 n Rl
2 Z k L, l"J % ,Zlk(;%yj) + n—g Z k(yi:yj) .
1,]=

RKHS:
MMD [F, X, Y] =

i,j=1 1,7=1

* Kernel is helping us to simplify the computation in infinite dimensional space
* To be simple, MMD is the upper bound of the domain mean discrepancy

http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm 46



Distribution Difference Measure

Maximum Mean Discrepancy (MMD)

Definition 2 Let F be a class of functions f : X — R and let p,q, X.Y be defined as above. Then
we define the maximum mean discrepancy (MMD) and its empirical estimate as

MMD [F,p, q] := suP (Epplf(z)] —Eyoq[f(¥)]). (1)
Arbitrary Function Space: red |
MMD [, X. Y] i= sup ( Zf - = 2 f(zm) . 2)

If f(x)=x, MMD is a first-order moment statistic;
If f(x)=x%, MMD is a second-order moment statistic;
 Moment match does not guarantee the distribution similarity.

* So, MMD can measure the discrepancy in arbitrary function space.

http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm 4



Theory---->Algorithm

* Induced by the generalization bound theory, a
number of models and algorithms are emerged, by
focusing on three key points.

1) Source error €g(h)
2) Domain discrepancy dyan s, Ur)
3) Combined error A = minyey es(h) + er(h)



Algorithm

How to design TL/DA models and algorithms?

* A taxonomy:

TL/DA models and
algorithms

Partial target No target
eweighting adaptation transfer

2007 »2018

Classifier
adaptation

49



Algorithm

Algorithm progress in the past 15 years

HHI]D Lc(Ds, Vs: 9( 0F)

w Subspace guide —_ )\ED (DS- DT, HD, HF)

ApakE 7.

f ....... SN * %§8 ngnﬁszj(@(xi)eyi) lgin Lo(Ds. Dr.0p:0p)

""""""" . 7Y . RV D
| Og 00 ° nll‘mim‘X'S'XTQYS?YT) + /\dea (DL, D) Ad ial transf
versarial transfer
° flx) = f"(x) + Af(x) + Ay, oy (Xs, X, W)
g [Berpy (V)] = Eren @@ = f* () +w' ¢(x) Deep transfer ]
e Feature-level transfer Using the idea of GAN. leam

the feature generation model

Classifier transfer feature representations with

Instance Leam a common subspace of  yaxinum mean discrepancy 2015
a transformation to minimize  ,.r0ss domains minimized. v

re-weightin L dic
& 2 Leam a generic classifier on domain discrepancy.
: _ a few labeled or unlabeled 2010 --
Leamn the instance weights o

samples in target domain.
source data with domain Sampies 1 farget domain
alignment to target data. 2007 --

2007 --

2014 --
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Algorithm

Impossibility Theory of DA

(Ben-David, et al.)

Visual Domain Adaptation
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/ LSDT (Zhang, et al.)
/  DTSL (Xu, etal.)

/-’f . E‘ORAL (Sun and Saenko)

/ /" RTML (Ding, et al.)

SGF (G Il tal /
(Ben-David, et al.) / / A ipopa L;n’j at) /-” /'/ JGSA (Zhang, et al.)
an, et al. / /
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ARTL \, OBTL

Transfer Adaptation Learning: A
Decade Survey, arXiv 2019.

KBTL EDA

(Gonen et al.) (Zhang and Zhang)

(Long, et Gf-)\\(!(arbmayghareh, etal)

: \

GRL (Ganin, et al.) \ \\ Source-free (Kundu, et al.)

DANN (Ajakan, et al.) \ \
\

. . _ MADA (Pei, et al.)
Domain Confusion \ CAN (Zhang, et al.)

ADDA CDAN (Long, et al.)
(Tzeng, et al.) MCD (Saito, et al.)
CyCADA (Hoffman, et al.)

(Tzeng, et al.)
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Algorithm

Principle of Instance Re-weighting (Jiang and Zhai, ACL
2007; Huang et al. NIPS 2007):

* Revisit the expected risk of test set in Pr’:

R[Pr. 6. U(z.y,0)] = By e [1(2,.0)] = By yyopr | Pl (2, 5.6) |

* If Pr=Pr’, it degenerates to the traditional ML;
Otherwise, we let their ratio between them be 3(z.y)

* Then, the regularized empirical risk becomes:

1 T
Ries|Z.3,1(x,y,0)] := — > Bil(wi,yi, 0) + AQ6]
i=1

* [3; is the re-weighting coefficient w.r.t. sample i.



Algorithm

Principle of Instance Re-weighting (Jiang and Zhai, ACL
2007; Huang et al. NIPS 2007):

* Kernel mapping based re-weighting and reduces
the domain discrepancy:

min || By py [@(2")] = Exnp, [B(z)®(2)]]]
st. B(x) >0, Epep [B(z)] =1
e Similarly, re-weighted maximum mean discrepancy

1 M

N
2
d; = || =57 E Qys O E
wmmd M

— e S . -
1= i 1=1



Algorithm

Principle of Classifier Adaptation (vang et al. ACM MM’07;
Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’ 18):

* Learn a common classifier on source domain, by leveraging a few
labeled/ unlabeled target samples from target domain

* Assumption: There exists a delta function between the auxiliary
classifier (source) f, and the new classifier (target) f.

f(x) = f(x) +Af(x) = f(x) + W' 6(x),

Standard SVM . ASVM N

Adaptive SVM 1 2,
min §HWH +C Z i

min 5wl +C"Z€a E—
st. & >0

s.t. & >0, inT@(Xi) > 1 =&, V(Xi,yi) € Dg) 'yf.f“'(xi) + .




Algorithm

Principle of Classifier Adaptation (vang et al. ACM MM’07;
Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’ 18):

e With similar idea, from SVM to MKL (multi-kernel learning):

P

fT(X) 1 fp + Z (],”Wm\,/m _|‘ b

p—= m=
-

Af(x)
* Introduces the domain discrepancy

nA g nr

=3 bt = e

DIST, (DA, D) =
AT T

» Adaptive MKL (AMKL)

H

: Lo
G(d) ==0*(d) + 6.J(d),
win G(d) = 5°(d) + 6J(d)

where

l M , ) n
J(d) = min - Lol w2 MBI OS¢,
(d) 1111;;1{}‘5‘_2(mz_lr Nlwil|* + MBI | + le

Win

T U 55
s.t. U,f (X!) > 1 — G G > ()



Algorithm

Principle of Classifier Adaptation (vang et al. ACM MM’07;
Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’ 18):

Representative work (zero padding feature augmentation,

low-rank solution and delta function):
@ Daumé lll, et al. ACLO7(Frustrating Easy Adaptation, EA)
@ Li, et al. TPAMI’14 (HFA)
®%(x) = (x.x.0), &(z)= (b 0, x)
P*(x) = (P(x)
B () = (P(x)

,®(x),0) kernelize
,0,®(x))

Examples in Re-ID (WeiShi Zheng and Jianhuang Lai):
» View-specific transform for Re-ID (IJCAI’15, TPAMI’'18)
* Deep zero padding
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Algorithm

Principle of Classifier Adaptation (vang et al. ACM MM’07
Duan et al. CVPR’12, TPAMI’12; Wang et al. ACM MM’ 18):

Representative work (zero padding feature augmentation,

low-rank solution and delta function):
(3) Li, et al. TPAMI’18 (LRE-SVMs)
(4) Zhang, et al. IEEE Sens.”17 (MFKS)

Rreg [W» l(XS» XT» W)] = z Remp [Wi; l(XSrXT' Wi)]

+”[W11 Wp, =, WD]”*

(5) Joachmis, ICML’1999 (T-SVM)

(©) Yang, et al. ACM MM’07 (ASVM)

(7) Duan, et al. TPAMI’12 (AMKL)

Duan, et al. TPAMI’13 (DTSVM, DTMKL)

F(x) = f"(x) + Af(x) = f*(x) + W' $(x)

9
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Algorithm

Principle of Feature Adaptation:

e Subspace unification (Pan et al. TKDE’10; TNNLS'11;
Hoffman et al. 1JCV’14; Kan et al. 1JCV’14)

* Manifold alignment (Gopalan et al. ICCV’11, SGF; Gong, et al.
CVPR’12, GFK; Fernando, et al. ICCV’13, SA)

* Feature reconstruction/representation (Jhuo, et al. CVPR’12,
RDALR; Shao, et al. IJCV’14, LTSL; Zhang et al. TIP’16, LSDT;
Xu et al. TIP’16, DTSL)
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Algorithm

v'Subspace unification:

* General paradigm (domain-common/shared subspace
learning)

Rreg [W: l(XSr XTr W)] = Remp [Wr l(XSr XTJ W)]+.Q[W]

~ Marginal distribution consistency

P(¢(Xs)) ~ P(¢p(X7))

- Conditional distribution consistency
P(p(X)|ys) ~ P(p(XE)|ys),i=1,-,C

e W is a transformation matrix.
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Algorithm

v'Manifold alighment:

* General paradigm (learn mapping)

@(0)"
. Lo — @(:t)r | H” w (20,27)
i X7 = xtij
arget ¢(1)T e} lecn
ace |

GFK

: construct kernels along the geodesic path to
SG F” model the domain shift by using infinite subspaces
G is a positive semi-definite mapping matrix

find some intermediate representation

along the geodesic path
F(M)=||XsM — X7||%

M* = argmina (F(M))

SA

learn the linear mapping M that makes the subspace closer
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v'Feature reconstruction:

* General paradigm (low-rank/sparse coding)

Source domain Xg Target domain Xy Source domain X Target domain X Source domain X¢

(] 1l
Subspace learning (e.g. PCA, LDA, etc.)
N T S

2hd

WX, Low rank Z Xy Latent space

WX;  —— WX{
____________________ . oos
- PCA or LDA subspace Shared space
Target domain Xy

(a) (b) (c)
LRR: strength (better locality of data, block-wise structure, neighbor to neighbor reconstruction )
weakness (strong assumption of independent subspaces and sufficient data, easy to get trivial solution)

ﬁ/n}r}; FW) +R(Z) + Q(E) F(.) is subspace learning fun.
st. f(Xp) = f(Xs)Z + E f(.) is transformation fun.

1 1
— | “s I
: rA%:g : /l, PXy (_Sparsc z P[X,, X7] ’/
: 1 b o e e e e e~
| I
1 1
1




Algorithm

v'Feature reconstruction:

* General paradigm (low-rank/sparse coding)

For a better basis:
Domain adaptive dictionary (Rama Chellappa. CVPR’13, SDDL)
* 1) domain-shared dictionary

. P12 ,
nin A_E{Zt} 1Py X 3y — Dagy I + R(D. P.a)

e 2) domain-specific dictionary

X i _D N T 2 S? Yo, OV
Bk k;f} Xty = Dy I F + Qas, )

* o denotes domain-specific coding coefficient w.r.t. the basis of
dictionary D.



Algorithm

Principle of Deep Network Adaptation:

Deep transfer

: Domain discrepancy Domain
Fine-tune . .
minimization confusion
Data-driven Model-driven Model-driven
Pre-train
ImageNet L=LosXe,Y) + Rymp (S, T) L =Les(Xs,Y) + Leons(S,T)

* Fine-tune is a kind of intuitive and data-driven transfer
learning method, which depends on pretrained models with
task-specific source database (e.g., ImageNet)



Algorithm

Deep network with discrepancy alighnment:

* Learn general feature representation with domain
discrepancy minimization in supervised manner
(Tzeng, arXiv’14; Long et al. ICML’15, NIPS’16; Yan, et al.
CVPR’17; Rozantsev et al. CVPR’18)

frozen O frozen
]

earn O learn O learn
.
.

MEK-

-0

O
O

conv2

[00--00]]

|ﬁoo--oo,|
O
Q-0

gooo?ooo)
v
[O0¢««0O0
v

[wOO"°OO

ol [0
o

O--

— Lclass + Ldisc

D
H]
'_l.
b
(]
Q.
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Algorithm

Domain confusion:

* Learn general feature representation with domain

confusion/domain alignment (Ajakan et al. NIPS’14,
DANN; Tzeng et al. ICCV’15, DDC; Murez et al. CVPR’18)

Softmax cross-entropy loss
S |
conv1 v convs fc6 | | fc7 fc8
- 8 Y T ) sourcedata ...
% -1 domain ) ) .
Source - - o ® " | confusion B 'C(xng? ys,Tr,yr, GD ,-Grepr,- 90) —
@ . o N odoss | £
T i @ feD [+ , , ; ) .
5 ERECI T | ﬁC(*L’SrySersyT:Hreprs 96‘)
; .| domain
":t!?v | classifier + Aﬁconf(a’;s, .I'T. QD - Qrepr)
S loss
L& .
':Zirg + I/L:soft(:}-c’fs yr; 9]’6[)1’? QC)
conv1 convs fo6 | | fe7 |/ T fc8
" labeled target data

Target

Goal: learning domain-invariant representation -



Algorithm

Principle of Deep Adversarial Adaptation:

« |_earn feature generation model with domain

confusion (Ganin et al. IMLR’16; Tzeng et al. CVPR’17, ADDA:

Chen et al. CVPR’18, RAAN; Saito et al. CVPR’18, MCD; Pinheiro,
CVPR’18)

* This kind of models are approaching the minimax essence of

domain adaptation.
P maximization

______________________________________________________

View 1:  min dyan(Ds, Dr) =2 sup |[Prp [z:7(z2) = 1] — Prg [z:7(z) = 1]|:
\ mEHAH '

iew 2: in d in — 2minerr (h(x & maxminerr (h(x
View 111}}11(]~4(S'T)¢>111j,1112(1 2}11':[/_:1?1_%(—,.’!(}2(4))) : heHEn(z(_z))
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Principle of Deep Adversarial Adaptation:

1 —— L
I:> E> |:> r H |:> ﬂ |:> Eclass label Uy
Y J
label predictor G, (-;6,)
20, N,

= domain classifier Gy(-;64)
=\ Je, -

Y
feature extractor Gy(-;0f) 4 l

oL,
{ o }
Gradient reversal layer for adversarial domain adaptation

L
J Soanjeay
L

\

[I |:> 0 domain label d

forwardprop  backprop (and produced derivatives)

g ® P < _~ Aligned (confusion)
max min err (h(x)) * " ® .. N % -
f heH ¢ ® \_J 3

hix) ©T

min err(h(x)) max err(h(x)) 67
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Principle of Deep Adversarial Adaptation:

Adversarial Adaptation

source images

~~

i‘-

1 ~a
I _ :Source'
) i CNN

T

target images

Target
CNN

Discriminator

domain
label

ADDA

Adversarial Discriminative

Domain Adaptation

Lep
Cross Entropy Loss

LRL’

adv
Domain Discriminator Loss

RAAN
Re-weighted Adversarial
Adaptation Network

Target sample

Xt

Class Predictions
Discrepancy Loss

pl(y\xt)\

—=d(pi(y[xe), pa(y[xt))

pz(ylxt'/'

=
Illll m‘f[rm

I iy S—

Fix Update !

MCD
Maximize Classifier
Discrepancy
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Algorithm

NEW DIRECTIONS/TOPICS in TL/DA:
v'Category shift problem (catastrophic misalignment)

UniDA (sample-level weighting idea based on entropy and
uncertainty) to simultaneously solve partial and open-set DA.

v'Inaccuracy of Target pseudo-labels

Clustering based idea and Progressive training.
v'Multi-source DA

Aggregate multiple sources to one source domain, +DA.
v'Source-free DA

Source data is unseen (data privacy), and you can only access
the source pre-trained model. Essence: Parameter transfer.

v'Domain generalization

This will be introduced in another slides, pls wait in patience >
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* Part Ill: Applications of TL/DA Algorithms



Applications

Transfer Learning + X
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Applications

» Application fields (machine learning related Al topics)
1) Computer vision

2) Natural language processing

3) Big data analysis Computer
4) Smart instruments Vision

5) Medical image analysis

6) Remote sensing

7) classification detection Retrieval

Image Object Image
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Image Classification

* Image classification is the benchmark task for testing each
new TL/DA model and algorithm.

* Cross-domain multi-class classification is standard protocol.

. TS 3 .":,‘. ) ] \ Nz o s \j::,-:':'—-" m,r"‘-»\'-"": TR D —_— ~ /;"-‘ \ :‘:;
Domain 1 (Sketch) v 2 Yo @ T AN @]
Ul S J }"ﬂl - i LA == ol |

Domain 2 (Painting)

Domain 3 (Cartoon)

Domain 4 (Photo)

dog elephant giraffe gitar horse house person
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Transferable Image Classification

Benchmark Datasets

Office-31 (3DA, 3 domains, 31 classes, 4652 images)
Office+Caltech-10 (4DA, 4 domains, 10 classes, 2533 images)
MNIST+USPS (3 domains, 10 classes, 67291 images)
Multi-PIE (5 domains, 68 ids, 41368 faces)

COIL-20 (2 domains, 20 classes, 1440 images)
MSRC+VOC2007 (2 domains, 6 classes, 9000+images)
IVLSC (4 domains, 5 classes, 15000+images)
Office-Home (4 domains, 65 classes, 15500 images)
ImageCLEF (3 domains, 12 classes, 1800 images)
P-A-C-S (4 domains, 7 classes, ~10000 images)

VisDA (2 domains, 12 classes, 280000 images)



Transferable Image Classification

SoTA Performance

Cross-domain classification accuracy on Office-Home (Resnet-50 backbone)

OfficeHome | Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl—-Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw —Pr|Avg.
ResNet-50 349 50.0 58.0 374 41.9 46.2 38.5 31.2 60.4 539 41.2 599 |46.1
DAN 43.6 57.0 67.9 458 56.5 60.4 440 436 67.7 63.1 51.5 743 | 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 | 57.6
JAN 459 61.2 68.9 504 59.7 61.0 458 434 70.3 63.9 524 76.8 | 58.3
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 574 509 77.3 70.9 56.7 81.6 1658
SAFN 52.0 1.7 76.3 64.2 69.9 71.9 63.7 514 77.1 70.9 57.1 81.5 |67.3
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 784 72.4 60.0 829 |67.6
SymNet 47.7 72.9 78.5 64.2 71.3 742 642 488 79.5 74.5 52.6 82.7 |67.6
Ours 555 73.5 78.7 60.7 74.1 73.1 59.5 55.0 80.4 72.4 60.3 843 |689

S. Wang and L. Zhang, “Self-adaptive Re-weighted Adversarial Domain Adaptation,” IJCAI, 2020.
Long, et al. “Conditional Adversarial Domain Adaptation,” NeurlPS, 2018.



Transferable Image Classification

SoTA Performance

Cross-domain classification accuracy on Office-31, ImageCLEF (Resnet-50 backbone)

Office-31 |A—»W D—-W W—D A—D D—A W—A |Avg. [g)‘lageCLEFl—DA IéP 1::_)1 o Cv_)l or P:_)S Avg.
Source Only| 684 967 993 680 62.5 60.7 |76.1 Source Only {748 839 91> 780 655 912 1807
) DAN 745 822 928 863 69.2 89.8 |825
TCA 727 967 996 741 617 609 77.6 RTN 756 86.8 953 869 727 922 849
GFK 72.8 950 982 745 634 61.0\77.5 DANN 75.0 86.0 96.2 87.0 743 91.5 |85.0
DDC 756 960 982 765 622 615 |783 JAN 76.8 88.0 94.7 89.5 742 91.7 |85.8
DAN 80.5 97.1 99.6 786 63.6 62.8 |80.4 MADA 75.0 87.9 96.0 88.8 752 922|858
RTN 845 96.8 994 775 662 64.8 |81.6 iCAN 79.5 89.7 947 89.9 785 92.0 |87.4
DANN 82.0 969 99.1 797 682 67.4 |82.2 CDAN 77.7 907 977 913 742 943 877
ADDA 862 962 9%4 77.8 695 689 |82.9 SAFN 78.0 91.7 962 91.1 77.0 94.7 |88.1
JAN 854 974 998 847 686 700 |8g4.3 Ours 78.3 91.3 96.7 90.5 78.1 96.2 88.5
MADA 90.0 974 99.6 87.8 70.3 66.4 852
SAFN 88.8 984 99.8 87.7 69.8 69.7 |85.7 Classification accuracy on MINIST-USPS
GTA 89.5 979 99.8 877 728 71.4 |86.5
MCD 88.6 985 100.0 922 69.5 69.7 |86.5 Handwritten | M > U U—> M | Avg.
iCAN 92.5 988 100.0 90.1 72.1 69.9 |87.2 ADDA 89.4  90.1 | 898
CDAN 94.1 98.6 1000 929 71.0 69.3 |87.7 CoGAN 95.6  93.1 | 943
TADA 943 987 998 91.6 729 73.0 |88.4 UNIT 96.0 936 | 948
SymNet 90.8 988 1000 939 746 72.5 |88.4 CDAN 93.9 969 | 954
Ours 952 98.6 1000 91.7 745 73.7 [89.0 CYCADA 95.6  96.5 | 96.1
Ours 94.1 98.0 96.1
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Transferable Image Classification

Domain adaptive/transferable feature visualization

100

100 100

100

» 5 o ° . : °
e o ' ) . .’ g_ - . L Y R ’ ‘
=Py <" * a8
O ogs W 0 “P 2 8o " w10 .s"'g,‘i
‘ i . ' ‘-. . , L 3 i3 ‘ o ’ ‘- 3. )
‘F::"“','- 5“‘ e ® .. . p " ® 4
-100 =100 = =100 =100
-100 0 100-100 0 100 -100 0 100 -100 0 100
(a) ResNet (b) DANN (¢) Ours (w/o Hp) (d) Ours
100 " 100 100 100
;z ". : a " 5 ®
ﬁ' - ° : J' : g .-: 2ol
°*~'E€ ° o[ it | o|¥est
?’ ‘ ‘ . ) P @ 'N °
-100 =100 ¢ 100 = 2100
-100 100 -100 100 -100 0 100 -100 0 100
(e) ResNet (D) DANN (g) Ours (w/o Hp) (h) Ours
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Object Detection

Definition of a detection task

* Image classification focuses on high-level abstract feature
semantics

* Object detection is a multi-task issue (classification vs.
localization) , the low-level features are also useful
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Object Detection

A number of models in object detection

HOG
detector
(2005)

DPM

detector
(2008~)

Two-stage

RCNN SPP-Net R-FCN
(2014~) (2014) (2016)

YOLOs

(2016~)

One-stage

SSD RetinaNet
(2016) (2017)

Anchor-free

> FCOS (2018)
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Object Detection

Imbalance Problems of object detection

* Problem 1: Scale imbalance (object of different size, scale)
SSD, FPN

* Problem 2: Class imbalance (foreground vs. background, easy
vs. hard) Focal loss, OHEM

 Problem 3: loU imbalance (loU levels, low vs. high quality,
outliers) Libra RCNN (balanced L1), GHM, loU based losses

* Problem 4: Loss imbalance (cls. vs. reg.) PISA, classification
aware localization loss, paid less attention



Object Detection

Solving scale imbalance problem: Feature Pyramid Network

* Lower levels have better spatial resolution

* Higher levels have stronger semantics information

v

v

1x1
. 1x1 C>< ,
1x1 ! X up
Cls+reqg ot
g rv\ L/ 2X up
) U 2xup

« In FPN, high-level semantic information is back-propagated to the

low-level, but information loss is serious.
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Object Detection

Single-shot Two-pronged Detector (TPNet):

* A new architecture of two-pronged bi-directional interaction
and transfer between low-levels and high-levels

* A Rectified Intersection of Union (RloU) loss

Spatial information (conv)

-

Keyang Wang and Lei Zhang, Single-Shot Two-Pronged Net with Rectified loU
Loss, ACM MM 2020. Oral paper) 82



Object Detection

Single-shot Two-pronged Detector (TPNet):

* A new architecture of two-pronged bi-directional interaction
and transfer between low-levels and high-levels

* A Rectified Intersection of Union (RloU) loss

r transductive features
Keyang Wang and Lei Zhang, Single-Shot Two-Pronged Net with Rectified loU
Loss, ACM MM 2020. Oral paper) 83



Object Detection

e TPNet architecture
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Object Detection

 Transductive block and Fusion block

Layer [ +2 Layer [+ 3
Xi+2 Xi+3
Forward - 4
. transfer v Orwar
Forward Deconv Layer [+1 fDeconv transfer
transfer X* . Layer I+2
Layer [ AR Conv ) 41 any — ®
vt e e (O P — Xieo
l A
(Concat —{Relu ) (Concat J=—s{ Relu ]
Layer [ /L Layer [+1 JL
XI ,\:JEltw sum [ oy X.H—l ,\_JE‘.ltw sum | Cony
(1x1) (1x1)
Deconv Deconv
Layer [+1 OutputTrLayer l Layer [+ 2 Qutput ‘]I:_Jayer I+1
l
Xi+1 Xoutput X2 Xf)_;%put
(a) T block L (b) T block L+1

Prediction Layer {+1 1
le—f-l

Deconv
Qutput Layer [
l

Prediction’ Layer [
1
Xp

(c) Fusion block
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|gradients|

Object Detection

* Gradient guided RloU loss
Revisit the standard loU loss Liov =1—1oU

1.5¢

05}

ANB
I0U =775
e U Less We can define the gradient (red curve) as:
. OLRIoU k
lgradients(ToU)| = | =57 | = (aloUtb)+ 70—

‘ integral

Lriov =1— (%IOU2 L bIoU + kln|IoU — ¢| 4 t)

0.2

0.4

0.6 0.8
loU . : .
° Note 5 model parameters analytically determined with

5 equations.
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Object Detection

e Gradient guided RloU loss

2 T T T T T 1(\
——IoU Loss loU Loss
—Rectified loU Loss . 08t —Rectified loU Loss| |
1.5} ! .
_ ' integral
c : o 06
g : ~ 04
i) 1
1
0.5T E o2t
1
L L I L :f 0 1 1 L L I\)
%’ 0.2 0.4 0.6 0.8 5\1) 0 0.2 0.4 0.6 08 B 1
loU loU
r L _ _
b—;:O 1 —Ekln|c| —t =1
k 19
la+b+- — 0 1 5 b—Fkin|l —c[—t=0
1 —c
2= Law=Law+ Lrrow + p(By' BY)
\ a det — ~cls RIoU P\Dyp , Dy
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Object Detection

* Experiments on PASCAL VOC

Method Backbone Input size | AP APso APgo AP0 APso APgo
two-stage:
Faster R-CNN [22] ResNet-50-FPN | ~1000x600 | 52.9 79.8 75.0 61.7 39.0 8.8
Cascade R-CNN [1] | ResNet-50-FPN | ~1000x600 | 58.5 80.0 74.7 658 50.5 215
LTR [24] ResNet-50-FPN | ~1000x600 | 57.5  80.0 75.5 65.4 48.0 18.3
one-stage:
SSD300 [17] VGG-16 300x300 52.7 vr.6 727  61.0 40.9 11.4
YOLOv2 [21] Darknet-19 544 x 544 h3.7 78.6 T73.6 62.0 41.6 12.8
DSSD320 [5] ResNet-50 321x321 56.1 79.6 74.8 64.1  46.1 16.0
GloU [23] ResNet-50-FPN 300x300 55.3 784 T4.1 63.5 45.9 14.6
DIoU [30] ResNet-50-FPN 300300 55.8 78.9 746 64.0 46.2 15.5
RefineDet320 [28] VGG-16 320x320 54.7  80.0 74.2 63.5 43.3 12.2
DAFS320 [11] ResNet-101 320x 320 h8.7 81.0 76.3 66.9 49.2  20.0
TPNet320(Ours) ResNet-50 320x320 59.4 803 76.3 66.8 50.9 22.5
SSD512 [17] VGG-16 512x512 57.5 T79.8 T76.6 66.7 494 15.2
DSSD512 [5] ResNet-50 513x513 58.5 815 77.7 67.6 50.0 15.8
RefineDet512 [28] VGG-16 512x512 584 818 778 67.2  49.6 15.6
RetinaNet [14] ResNet-101-FPN | ~1000x600 | 59.3 81.1 77.2 67.5 504 20.1
DAFS512 [11] VCGG-16 512x512 594 82.4 78.2 67.6 509 18.0
TPNet512(Ours) ResNet-50 512x512 61.2 &1.7 78.0 69.3 53.0 24.0
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Object Detection

* Experiments on MS COCO

Method Backbone FPS| AP AP:xy AP | APs APy  APp
two-stage:
Faster R-CNN [22] VGG-16 7 21.9 427 - - - -
Libra R-CNN [19] ResNet-101-FPN | 6.8 | 40.3 61.3  43.9 | 22 43.1 51.0
TridentNet [12] ResNet-101 2.7 | 427 63.6  46.5 | 23. 46.6 56.6
one-stage:
SSD300 [17] VGG-16 43 | 25,1 43.1 258 | 6.6 259 41.4
YOLOvV2 [21] Darknet-19 40 | 21.6  44.0 19.2 | 5.0 224 35.5
DSSD321 [5] ResNet-101 9.5 | 28.0 46.1 29.2 | 74 281 47.6
RefineDet320 [28] ResNet-101 - 32.0 51.4 342 | 105  34.7 50.4
DAFS320 [11] ResNet-101 - 33.2 527 357 | 109 351  52.0
TPNet320(Ours) ResNet-101 25.7 1 34.2 53.1 36.4 | 13.6 36.8 50.5
SSD512 [17] VGG-16 22 288 48,5 30.3 | 109 31.8 43.5
DSSD513 [5] ResNet-101 5.5 | 33.2 53.3 352 | 13.0 354 51.1
RefineDet512 [28] ResNet-101 - 36.4 57.5  39.5 | 16.6  39.9 51.4
DAFS512 [11] ResNet101 - 38.6 58.9 422 | 17.2 422 54.8
EFGRNet512 [18] ResNet-101 21.7 | 39.0 588 423 | 17.8 436 54.5
RetinaNet800 [14] ResNet-101-FPN | 5 39.1  59.1  42.3 | 21.8 42.7 50.2
GHM-C + GHM-R [10] | ResNet-101-FPN | 4.8 | 39.9 60.8 425 | 20.3 43.6 54.1
CornerNet [9] Hourglass-104 44 | 405  56.5 43.1 | 194  42.7 53.9
TPNet512(Ours) ResNet-101 13.9 | 39.6 58.5 428 | 20.5 453 53.3
TPNet5121 (Ours) ResNet-101 - 41.2 599 44.2 | 22.6 46.3 55.0
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Object Detection

* Visualization
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Flaws of Object Detectors

Motivation
* Labels of a specific target domain are not free to use.
* Leveraging a related source domain is natural.

 Existing detectors (one stage vs. two-stage) are not
transferable.

Normal weather (source) Foggy weather (target)

Image degradation (noise, e.g. haze) has a clear impact on learning
91



Flaws of Object Detectors

Perspective of distribution mismatch

High-quality detection Low-quality detection High-quality detection
(Faster RCNN) (Faster RCNN) (Transfer Learning)

Z. He and L. Zhang, Multi-adversarial Faster RCNN for Unrestricted Object Detection,
ICCV, 2019. 92



Flaws of Object Detectors

Perspective of adversarial sample

e Attack YOLO-v2 to fool surveillance cameras (Al is not safe).

Simen Thys, W.V. Ranst, Fooling automatic surveillance cameras: adversarial patches to
attack person detection, arXiv, 2019. 93



Domain-adaptive Object Detection

DAF model based on H -divergence

ndy(S,T) & in{errs(h rr—(h
1'11;11 »(S,T) HljﬁLX};Iél?l%{e”S( (x)) + errr(h(x))}

1) Image-level alignment; 2)Instance-level alignment

bounding box ="
(B) | )
: instance-level

cls. reg. || representation consistency

(B, 1) -
regularization

input image

ROl Pooling

image-level

representation
I

(a) Faster R-CNN (b) Domain adaptation components

Chen et al., Domain adaptive faster-rcnn for object detection in the wild, CVPR, 2018.
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Domain-adaptive Object Detection

MAF model in ICCV’19

RPN
Source Target
Domain Domain Im
VGG 16 Aggregated Proposal
I > Im Feature Alignment

- Reg Pred
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W
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Dy D, D;

* Multiple GRLs for adversarial domain adaptation

Z. He and L. Zhang, Multi-adversarial Faster RCNN for Unrestricted Object Detection, ICCV, 2019.
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Domain-adaptive Object Detection

ATF model in ECCV’20 Out of control

. 4 2 4 -~
er(h) < és(h) + \/E (dlog —— +log 5) + dy(Ds, Dr) +{x

f
Unlabeled target data

e & Target
Img

|
are
3 drge

LS. _

e

—> -+ Cls
- Re eg

5
Larp = Lper + A(Lr—pac+ Y LE pac)
k=3

Z. He and L. Zhang, Domain Adaptive Object Detection via Asymmetric Tri-way Faster-RCNN, ECCV, 2020.
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Domain-adaptive Object Detection

Experiments on cross-domain detection

Table 1. The cross-domain detection results from Cityscapes to Foggy Cityscapes.

Methods person rider car truck bus train mcyclebcycle|| mAP
(Faster-RCNN 241 331 343 41 223 3.0 153 26.5 || 20.3 |
DAF(CVPR'18) [4] | 25.0 31.0 40.5 22.1 353 20.2 20.0 27.1 || 27.6
MAF(ICCV’19) [17] | 28.2 39.5 439 238 399 333 29.2 339 | 34.0
Strong-Weak [31] 29.9 423 435 245 36.2 32.6 30.0 353 | 34.3
D&match [22] 30.8 405 443 272 384 345 284 322 || 346
NL /w res101 [20] 35.1 422 492 30.1 453 27.0 26.9 36.0 || 36.5
SCL [35] 31.6 44.0 448 30.4 41.8 40.7 33.6 36.2 || 379
ATF(1-block) 33.3 43.6 44.6 24.3 39.6 105 27.2 35.6 || 32.3
ATF(2-blocks) 34.0 46.0 49.1 264 46.5 14.7 30.7 37.5 || 35.6
ATF (ours) 34.6 47.0 50.0 23.7 43.3 387 334 38.8| 38.7
ATFEF* 34.6 46.5 49.2 235 43.1 29.2 332 39.0 || 37.3

18% improvement with transfer learning
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Domain-adaptive Object Detection

Experiments on cross-domain detection

Table 2. The results of domain adaptive object detection on Cityscapes and KITTT.

Tasks [Faster-RCNN|DAF [4] |MAF [17] |S-W [31] |SCL [35] |ATF(ours)
K to C |30.2 38.5 41.0 37.9 41.9 42.1
Cto K |53.5 J N 721 710 27 73.5

12% and 20% improvement with transfer learning
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Domain-adaptive Object Detection

Experiments on cross-domain detection

Table 3. The cross-domain detection results from Pascal VOC to Clipart.

Methods | aero bike bird boat bottle bus car cat chair cow |
( Faster-RCNN 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7)

DAF [4] 150 346 124 11.9 19.8 21.1 232 3.1 221 26.3

BDC-Faster 202 464 204 193 187 41.3 265 6.4 33.2 11.7

WST-BSR [21] 280 645 239 19.0 219 64.3 43.5 164 42.2 259
Strong-Weak [31]| 26.2 48.5 32.6 33.7 385 54.3 37.1 18.6 34.8 583

MAF [17] 38.1 61.1 25.8 43.9 40.3 41.6 40.3 9.2 37.1 484

SCL [35] 44.7 50.0 33.6 27.4 42.2 556 38.3 19.2 37.9 69.0

ATF (ours) 41.9 67.0 274 36.4 41.0 485 42.0 13.1 39.2 75.1

Methods |table dog horse mbike prsn plant sheep sofa train tv |mAP
( Faster-RCNN 13.8 6.0 36.8 459 487 41.9 16.5 7.3 229 32.0[27.8)

DAF [4] 106 10.0 19.6 394 346 293 1.0 17.1 19.7 248 |19.8

BDC-Faster 260 1.7 36.6 41.5 37.7 44,5 106 204 33.3 155 |25.6

WST-BSR [21] 305 7.9 255 67.6 545 364 10.3 31.2 57.4 435 |35.7
Strong-Weak [31]| 17.0 12.5 33.8 65.5 61.6 52.0 9.3 249 54.1 49.1|38.1

MAF [17] 242 134 36.4 527 57.0 52,5 18.2 243 329 393 |36.8
SCL [35] 30.1 26.3 344 67.3 61.0 479 214 26.3 50.1 47.3 |41.5
ATF (ours) 33.4 79 41.2 56.2 614 50.6 42.0 25.0 53.1 39.1 [42.1

14% improvement with transfer learning v



Open issue

Something You May Concern:

Q: Does degradation removal HELP Object Detection and Image Classification
(e.g., dehazing)?

View 1: New research finds that dehaze DOES NOT help object detection and
image classification. The reason is that dehaze does not add NEW information
beneficial to high-level tasks.

Groundtruth 5 dehazing models

B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, Z. Wang, “Benchmarking Single Image Dehazing and Beyond,”
IEEE Trans. Image Processing, 2019.
Y. Pei, Y. Huang, Q. Zou, X. Zhang, S. Wang, “Effects of Image Degradation and Degradation Removal to CNN-

based Image Classification,” IEEE Trans. Patten Analysis and Machine Intelligence, 2019. 100



Open issue

Something You May Concern:

Q: Does degradation removal HELP Object Detection and Image Classification
(e.g., dehazing)?
View 2: Adversarial samples.

Panda |s o Gibbon
(99.3% confidence)

Ekin Dogus Cubuk, Barret Zoph, Samuel Stern Schoenholz, Quoc V. Le, Intriguing

Properties of Adversarial Examples
Szegedy et al, Deep Neural Networks are Easily Fooled: High Confidence Predictions
101

for Unrecognizable Images



https://openreview.net/profile?email=cubuk@google.com
https://openreview.net/profile?email=barretzoph@google.com
https://openreview.net/profile?email=schsam@google.com
https://openreview.net/profile?email=qvl@google.com
https://link.zhihu.com/?target=https://arxiv.org/pdf/1312.6199.pdf

Semantic Segmentation

Lower-level prediction (pixel-level):
* Semantic segmentation needs pixel-level labeling

* Transfer from synthetic domain to real domain.

From Computer game From Cityscapes

Du et al. SSF-DAN: Separated Semantic Feature based Domain Adaptation

Network for Semantic Segmentation, ICCV 2019.
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Semantic Segmentation

Domain-adaptive semantic segmentation framework:

Prediction Ground Truth
Segmenter (Generator) (Pseudo Label)

(H,W,C) | Downsample - iz
Q> : :
h @ » ©
g N {

W

o st U
as (b,w,C) Separable F© Shared -

Feature Feat 0
- eature i ' ~ [

.

-’ - @ | e | o

W

SSF-DAN

Target Domain Progressive >
I Confidence . Ladv
Strategy . i

SS-D (Discriminator)

* H-divergence based adversarial domain adaptation theory
* GRL minimax optimization

-~

J o 181
IBRIIAY ISIM-SSE[D)

CA-R
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Semantic Segmentation

Method Base Net | road sidewalk building light sign veg sky person rider car bus mbike bike ‘ mloU
Source only Dilation-Frontend | 6.4 17.7 20.7 0.0 7.2 303 668 5l1.1 1.5 473 39 0.1 0.0 | 20.2
FCNs Wild [15] [41] 11.5 19.6 30.8 0.1 11.7 423 687 512 38 540 32 0.2 0.6 | 22.1
Source only FCN8s-VGG16 5.6 11.2 59.6 8.0 53 724 756 35.1 9.0 236 45 0.5 18.0 | 27.6
Curr. DA [43] [22] 65.2 26.1 74.9 3.5 3.0 76.1 70.6 47.1 8.2 432 207 0.7 13.1 | 34.8
Source only DeepLab-v2 55.6 23.8 74.6 6.1 12,1 748 79.0 553 19.1 39.6 233 1377 250 38.6
AdaptSegNet [34] [17] 84.3 42.7 77.5 47 7.0 779 825 543 21.0 723 322 189 323 46.7
FCN8s-VGGl6 | 17.2 19.7 47.3 3.0 9.1 71.8 783 3706 47 422 9.0 0.1 0.9 | 262

Source only [22] 69.6 28.7 69.5 11.9 13.6 820 81.9 49.1 145 66.0 6.6 3.7 32.4 | 36.1
CBST [49] ResNet-38 32.6 21.5 46.5 4.8 13.1 708 603 56.6 35 741 204 89 13.1 ] 33.6
[39] 53.6 23.7 75.0 23,5 263 848 747 67.2 175 84.5 284 152 558 | 484

FCN8s-VGGl6 | 17.2 19.7 47.3 3.0 9.1 71.8 783 376 47 422 9.0 0.1 0.9 | 262

Source only [22] 87.1 36.5 79.7 13.5 7.8 81.2 767 50.1 127 78.0 350 46 1.6 | 434
Ours DeepLab-v2 55.6 23.8 74.6 6.1 12,1 748 79.0 553 19.1 39.6 233 137 250 38 6

[17] 84.6 41.7 80.8 1.5 147 808 853 575 21.6 820 360 193 345 50 0

Target Image

Ground Truth

Before Adaptation

Soft Class-wise + Global

SS-D + CA-R

12%



Image Retrieval

A classical similarity match task:

* Cross-modal retrieval (text--image)

* Hashing retrieval (image--image)

* Person Re-identification (person--person)

* Person Search (image--person)

,mmmmms

,FTTTTTTTN

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.
J. Liu, L. Zhang, Optimal Projection Guided Transfer Hashing for Image Retrieval, AAAI 2019.
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Domain-adaptive Image Retrieval

Consider a cross-domain retrieval problem:

Database

Query

Single-domain retrieval

C —

Cross-domain regrieval

Returned

orre%tvch

Domain
mismatch

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.
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Domain-adaptive Image Retrieval

Probability Weighted Compact Feature Learning:
e Hashing for compact feature (binary feature of low memory)
* Focal triplet hashing in Bayesian perspective (BP)

* The posterior probability of compact feature f,f,f, w.r.t. to
X, X;, X, given their similarity s; and s;,

p(fi; fj: flc_|8..g__j, Sik) &

1,7,keX

p(sij, siklfis fi- fu)p (fi)p (fj)p (fr)

1,7,keX

F. Huang, L. Zhang, Probability Weighted Compact Feature for Domain Adaptive Retrieval, CVPR 2020.



Domain-adaptive Image Retrieval

Probability Weighted Compact Feature Learning:
e Hashing for compact feature (binary feature of low memory)
* Focal triplet hashing in Bayesian perspective (BP)

* The posterior probability of compact feature f,f,f, w.r.t. to
X, X;, X, given their similarity s; and s;,

max Z wijrlog p (sij. sik|fi. i fr) +

i,j.keX
Zlo p(fi)+ ) logp(fi)+ ) logp (fi)

* p(.) is sampled from a Gaussian distribution

p(fs) = e=0abef) . o=Mdlyi.CThy) L =X



Domain-adaptive Image Retrieval

Probability Weighted Compact Feature Learning:

Source domain images

- 936

Target domain images

wW.C.B

Feature extraction

Xs

Xt
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Domain-adaptive Image Retrieval

Experiments on cross-domain retrieval:

Table 1. The MAP scores (%) on MNIST&USPS, VOC2007&Caltech101, and Caltech256&ImageNet databases with varying code length
from 16 to 128 for cross-domain retrieval.

MNIST&USPS VOC2007&Caltech101 Caltech256&ImageNet
Bit 16 32 48 64 96 128 16 32 48 64 96 128 16 32 48 64 96 128
NoTL 28.13 30.05 28.24 3034 31.76 31.72 | 35.95 37.86 3828 38.49 38.67 3897 | 1510 19.77 2280 2439 26.07 27.28
SH 1571 13.85 12,05 11.78 11.38 11.78 | 29.94 30.26 32.51 33.76 3259 33.03 | 10.37 11.67 12,17 11.88 12.67 12.89

ITQ 27.38 30.92 3144 3225 33.12 3344 | 40.13 39.63 3945 3998 39.27 3989 | 16.94 2200 2444 2621 2796 28.89
DSH 21.15 27.53 2971 26.13 26.60 28.94 | 40.97 42.03 43.06 4581 43.78 42.86 | 8.27 9.60 11.55 1234 1356 15.64
LSH 16.25 16.99 23.23 2038 1970 2698 | 33.40 3399 3403 3289 34.12 3450 | 5.36 6.72 1039 1271 15.60 17.08
SGH 2483 2478 2585 2778 28.26 2935 | 35.77 3406 33.60 33.11 3275 3241 | 1249 17.23 2034 2175 2446 2542
ITQ+ 2027 20.53 16,77 1587 17.79 1490 | 35.35 3448 3433 3442 3405 34.74 - - - - - -
LapITQ+ | 26.38 26.31 2491 24.61 22.04 2133 | 38,95 3843 39.64 3935 3933 38.76 - - - - - -
GTH 19.10 24,17 2427 2438 23.64 29.36 | 36,70 3895 37.23 37.87 37.70 3836 | 11.56 1479 1697 19.53 20.88 22.38
OCH 18.94 2573 2673 2634 27.88 2922 | 71.50 72.27 7265 7271 69.17 6891 | 11.56 1536 17.49 20.18 22.00 22.90
KSH 4375 4691 50.02 4743 4525 46.81 | 7474 76.05 7671 76.70 76.22 73.14 | 20.34 12.07 2677 32.83 35.28 3449
SDH 29.98 43.02 4257 4656 4240 48.12 | 67.60 6575 68.58 65.06 65.66 67.03 | 1805 2571 2623 2638 26.77 2629
PWCF 47.47 55772 5544 56.55 5489 5495 79.38 8042 79.24 7931 78.15 78.87 | 22.46 30.58 3529 3524 38.92 40.32

Significant improvement with domain adaptation
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* Summary



Summary vs. Future

In this talk, a systematic introduction of transfer learning and
domain adaptation in background, theory, algorithms and
applications.

 Statistical machine learning is conditional on i.i.d. distribution
* Ben-David proves an upper bound of domain adaptation

* Deep learning triggers the progress of transfer learning

* Transfer learning is showing a bloom suitation

* A wide spread of applications in many fields



Summary vs. Future

In Al era, researchers are exploring universal techniques.

* Vision perception in open environment

Natural language processing in translation and interaction.

Brain like learning

From perception to cognition

Causality and reasoning
Attack and defense

* Al ethics connecting society (privacy, safety, etc.)



Thank you
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